

CHEMISTRY STANDARD LEVEL PAPER 2

Tuesday 8 May 2012 (afternoon)

1 hour 15 minutes

~ I:		•		
(and (ペーキへ	session	niim	har
Cancin	1410	VE/VIOL	1111111	
Callai	aacc	30331011	110111	\sim .

0	0								
---	---	--	--	--	--	--	--	--	--

Examination code

2	2	1	2	_	6	1	1	7
---	---	---	---	---	---	---	---	---

INSTRUCTIONS TO CANDIDATES

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- Section A: answer all questions.
- Section B: answer one question.
- Write your answers in the boxes provided.
- A calculator is required for this paper.
- A clean copy of the *Chemistry Data Booklet* is required for this paper.
- The maximum mark for this examination paper is [50 marks].

SECTION A

Answer all questions. Write your answers in the boxes provided.

1. Hydrogen peroxide, $H_2O_2(aq)$, releases oxygen gas, $O_2(g)$, as it decomposes according to the equation below.

$$2H_2O_2(aq) \rightarrow 2H_2O(1) + O_2(g)$$

50.0 cm³ of hydrogen peroxide solution was placed in a boiling tube, and a drop of liquid detergent was added to create a layer of bubbles on the top of the hydrogen peroxide solution as oxygen gas was released. The tube was placed in a water bath at 75 °C and the height of the bubble layer was measured every thirty seconds. A graph was plotted of the height of the bubble layer against time.

a)	Explain why the curve reaches a maximum.	[1]
----	--	-----

(Question 1 continued)

(b)	Use	the graph to calculate the rate of decomposition of hydrogen peroxide at 120 s.	[3]
(c)	The	experiment was repeated using solid manganese(IV) oxide, $MnO_2(s)$, as a catalyst.	
	(i)	Draw a curve on the graph opposite to show how the height of the bubble layer changes with time when manganese(IV) oxide is present.	[1]
	(ii)	Explain the effect of the catalyst on the rate of decomposition of hydrogen peroxide.	[2]

(Question 1 continued)

- (d) The decomposition of hydrogen peroxide to form water and oxygen is a redox reaction.
 - (i) Deduce the oxidation numbers of oxygen present in each of the species below. [2]

Species	Oxidation number of oxygen
H_2O_2	
H ₂ O	
O_2	

(ii)	State two half-equations for the decomposition of hydrogen peroxide.	[2]
	Oxidation:	
	Reduction:	

2.

(a)	State	e the equation for the reaction between magnesium and hydrochloric acid.	[1]
	• • •		
(b)	Dete	ermine the limiting reactant.	[3]
(c)	Calc	culate the theoretical yield of hydrogen gas:	
(c)	Calc (i)	culate the theoretical yield of hydrogen gas: in mol.	[1]
(c)			[1]
(c)			[1]
(c)			[2]
(c)	(i)	in mol.	
(c)	(i)	in mol.	
(c)	(i)	in mol.	
(c)	(i)	in mol.	

(Question 2 continued)

	Suggest two reasons why the volume of hydrogen gas obtained was less.	
		_
(a)	State the equation for the reaction between sodium and water.	
(b)	State and explain one difference between the reactions of sodium and potassium with water.	
1		

(a)	¹³¹ I i	s a radioactive isotope of iodine.	
	(i)	Define the term <i>isotope</i> .	
	(ii)	Determine the number of neutrons in one atom of iodine-131.	
	(iii)	Identify one use of iodine-131 in medicine and explain why it is potentially dangerous.	
(b)	Disc	uss the use of carbon-14 in carbon dating.	

SECTION B

Answer one question. Write your answers in the boxes provided.

(i)	Distinguish between the terms <i>empirical formula</i> and <i>molecular formula</i> .
	Empirical formula:
	Molecular formula:
(ii)	Determine the empirical formula of X .
(iii)	Determine the molecular formula of X .
(iii)	Determine the molecular formula of X .

(Question 5 continued)

(iv)	X is a straight-chain carboxylic acid. Draw its structural formula.	[1
v)	Draw the structural formula of an isomer of X which is an ester.	[1]
(vi)	The carboxylic acid contains two different carbon-oxygen bonds. Identify which bond is stronger and which bond is longer.	[2]
	Stronger bond:	
	Longer bond:	

(Question 5 continued)

	CH ₃ OCH ₂ CH ₃ , is more volatile.	[3
(ii)	Propan-1-ol, CH ₃ CH ₂ CH ₂ OH, and hexan-l-ol, CH ₃ (CH ₂) ₄ CH ₂ OH, are both alcohols. State and explain which compound is more soluble in water.	[2
(ii)		[2
(ii)		[2
(ii)		[2

(Question 5 continued)

(c)	Graphite is used as a lubricant and is an electrical conductor. Diamond is hard and does
	not conduct electricity. Explain these statements in terms of the structure and bonding
	of these allotropes of carbon.

[6]

(a)	Dist	inguish between the terms strong base and weak base, and state one example of each.	[
(b)	Ammonia, NH ₃ , is a base according to both the Brønsted–Lowry and the Lewis theories of acids and bases.						
	(i)	State the equation for the reaction of ammonia with water.					
	(ii)	Explain why ammonia can act as a Brønsted–Lowry base.					
	(iii)	Explain why ammonia can also act as a Lewis base.					

(Question 6 continued)

(i)	When ammonium chloride, NH ₄ Cl(aq), is added to excess solid sodium carbonat Na ₂ CO ₃ (s), an acid–base reaction occurs. Bubbles of gas are produced and th solid sodium carbonate decreases in mass. State one difference which would be observed if nitric acid, HNO ₃ (aq), was used instead of ammonium chloride.				
(ii)	Deduce the Lewis structures of the ammonium ion, $\mathrm{NH_4}^+$, and the carbonate ion, $\mathrm{CO_3}^{2-}$.				
	Ammonium ion Carbonate ion				
(iii)	Predict the shapes of $\mathrm{NH_4}^+$ and $\mathrm{CO_3}^{2-}$.				
(iii)	Predict the shapes of $\mathrm{NH_4}^+$ and $\mathrm{CO_3}^{2-}$. $\mathrm{NH_4}^+$:				
(iii)					
(iii)	NH ₄ ⁺ :				
(iii)					

(Question 6 continued)

(d)	The equation for the reaction between sodium hydroxide, NaOH, and nitric acid, HNO ₃ ,
	is shown below.

 $NaOH(aq) + HNO_3(aq) \rightarrow NaNO_3(aq) + H_2O(l)$ $\Delta H = -57.6 \text{ kJ mol}^{-1}$

(i)	Sketch and label an enthalpy level diagram for this reaction.	[3]
-----	---	-----

(ii)	Deduce whether the reactants or the products are more energetically stable,	
	stating your reasoning.	[1]

(iii) Calculate the change in heat energy, in kJ, when 50.0 cm³ of 2.50 mol dm⁻³ sodium hydroxide solution is added to excess nitric acid. [2]

(Question 6 continued)

)	h			-		ıt	u	r	e	0	f		h																													ni —	n	e	-	t	h	e	
														•			•					•							 	•					•		•				 								
														•			•					•							 					•								 							
														•								•							 	•					•		•					 -							

(i)	State the meaning of the term <i>isomers</i> .	[1]
(ii)	Deduce the structural formulas of 2-bromobutane and 1-bromo-2-methylpropane, and identify each molecule as primary, secondary or tertiary.	[4]
	and identify each increase as primary, secondary or terriary.	Γ.
	and racinary each morecure as primary, secondary or termary.	1.3
		<i>[·]</i>
		<i>L-3</i>
		<i>L</i> • J

(b) Alkanes undergo few reactions other than combustion and halogenation.

(Question 7 continued)

(i)	Explain why alkanes have low reactivity.	[2]
(ii)	Outline the meaning of the term <i>homolytic fission</i> .	[1]
(iii)	Describe the meaning of the symbol Br•.	[1]
(iv)	State an equation for the reaction of ethane with bromine.	[1]

(This question continues on the following page)

Turn over

(Question 7 continued)

	Explain the reaction of ethane with bromine using equations for the initiation step, two propagation steps and one termination step.	[5
Und	er certain conditions but-2-ene can react with water to form butan-2-ol.	
		Γ1
	ler certain conditions but-2-ene can react with water to form butan-2-ol. Identify a suitable catalyst for this reaction.	[1]
		[1]
		[1]
		[1]
Und		[1]
		[1]

(Question 7 continued)

((ii)	But-2-ene can be	converted to 2.	-bromobutane and	then to	butan-2-ol a	s follows
١	11	Dut 2 one can be	converted to 2	or ornou attaine and	a then to	outuii 2 oi a	S IUIIUWS.

$$CH_3CH=CHCH_3 \xrightarrow{\quad \mathbf{I} \quad} CH_3CH(Br)CH_2CH_3 \xrightarrow{\quad \mathbf{II} \quad} CH_3CH(OH)CH_2CH_3$$

Identify the reagent(s) and conditions necessary for each of the steps I and II. [4]

Step I:		
Step II:		

Please do not write on this page.

Answers written on this page will not be marked.

